Mời quý thầy cô, những em học viên lớp 9 xem thêm tài liệu Tâm đường tròn nội tiếp tam giác.

Tài liệu tổng hợp toàn bộ kỹ năng và kiến thức lý thuyết phương trình đường tròn, nửa đường kính đường tròn nội tiếp tam giác. Qua tài liệu này những em có thêm nhiều tư liệu xem thêm, trau dồi kỹ năng và kiến thức để học tốt Toán 9. Ngoài ra những em xem thêm thêm Tâm đường tròn ngoại tiếp tam giác. Vậy tiếp về sau là nội dung chi tiết mời những bạn cùng theo dõi và tải tài liệu tại đây.

Tổng hợp kỹ năng và kiến thức tâm đường tròn nội tiếp tam giác

  • 1. Khái niệm đường tròn nội tiếp tam giác
  • 2. Cách xác định tâm đường tròn nội tiếp tam giác
  • 3. nửa đường kính đường tròn nội tiếp tam giác
  • 4. Phương trình đường tròn nội tiếp tam giác
  • 5. những dạng bài tập về đường tròn nội tiếp tam giác
  • 6. Bài tập vận dụng đường tròn nội tiếp tam giác

1. Khái niệm đường tròn nội tiếp tam giác

Đường tròn nội tiếp tam giác là khi ba cạnh của tam giác là tiếp tuyến của đường tròn và đường tròn nằm hoàn toàn bên trong tam giác.

2. Cách xác định tâm đường tròn nội tiếp tam giác

Để xác định được không những tâm đường tròn nội tiếp tam giác vuông mà còn tâm đường tròn nội tiếp tam giác đều nữa thì ta cần ghi nhớ lý thuyết.

Với tâm đường tròn nội tiếp của tam giác là giao điểm ba đường phân giác trong của tam giác, hoặc rất có thể là hai đường phân giác.

– Cách 1: Gọi D,E,F là chân đường phân giác trong của tam giác ABC kẻ lần lượt từ A,B,C

+ Bước 1 : Tính độ dài những cạnh của tam giác

+ Bước 2 : Tính tỉ số k_{1} = frac{AB}{AC}, k_{2} = frac{BA}{BC}, k_{3}=frac{CA}{CB}

+ Bước 3 : Tìm tọa độ những điểm D, E, F

+ Bước 4: Viết phương trình đường thẳng AD,BE

+ Bước 5: Tâm của đường tròn nội tiếp tam giác ABC là giao điểm của AD và BE

– Cách 2: Trong mặt phẳng Oxy, ta có thân xác định tọa độ điểm I như sau:

left{begin{matrix} x_{I} = frac{BC.x_{A} + CA.x_{B} + AB.x_{C}}{BC+CA+AB}\ y_{I} = frac{BC.y_{A}+CA.y_{B}+AB.y_{C}}{BC+AC+BC} end{matrix}right.

3. nửa đường kính đường tròn nội tiếp tam giác

Tam giác ABC có độ dài lần lượt là a, b, c ứng với ba cạnh BC. AC, AB.

– Nửa chu vi tam giác

p = dfrac {a+b+c} {2}

– nửa đường kính đường tròn nội tiếp tam giác

r = dfrac {2S}{a+b+c} =sqrt{dfrac {(p-a)(p-b)(p-c)}{p}}

4. Phương trình đường tròn nội tiếp tam giác

Cho tam giác ABC có A(x_{A};y_{A}), B(x_{B}; y_{B}), C(x_{C}; y_{C})

– Cách 1:

+ Viết phương trình hai đường phân giác trong góc A và B

+ Tâm I là giao điểm của hai đường phân giác trên

+ Tính khoảng cách từ I đến một cạnh của tam giác ta được nửa đường kính

+ Viết phương trình đường tròn

– Cách 2:

+ Viết phương trình đường phân giác trong của đỉnh A

+ Tìm tọa độ chân đường phân giác trong đỉnh A

+ Gọi I là tâm đường tròn, tọa độ I thỏa mãn hệ thức underset{ID}{rightarrow}=- frac{BD}{BA}underset{IA}{rightarrow}

+ Tính khoảng cách từ I đến một cạnh của tam giác

+ Viết phương trình đường tròn

5. những dạng bài tập về đường tròn nội tiếp tam giác

Dạng 1: Tìm tâm của đường tròn nội tiếp khi biết tọa độ ba đỉnh

Ví dụ: Trong mặt phẳng Oxy cho tam giác ABC với A(1;5) B(–4;–5) và C(4;-1).Tìm tâm I của đương tròn nội tiếp tam giác ABC .

Giải:

Ta có AB = 5sqrt{5}, AC=3sqrt{5} BC=4sqrt{5}

Do đó:

left{begin{matrix} x_{I} = frac{BC.x_{A} + CA.x_{B} + AB.x_{C}}{BC+CA+AB} = frac{4sqrt{5}.1 + 3sqrt{5}.(-4)+5sqrt{5}.4}{4sqrt{5}+3sqrt{5}+5sqrt{5}} = 1\ y_{I} = frac{BC.y_{A}+CA.y_{B}+AB.y_{C}}{BC+AC+BC} = frac{4sqrt{5}.5 + 3sqrt{5}.(-5)+5sqrt{5}.(-1)}{4sqrt{5}+3sqrt{5}+5sqrt{5}}=0end{matrix}right.

Vậy tâm của đường tròn nội tiếp tam giác ABC là I(1;0)

Dạng 2: Tìm nửa đường kính đường tròn nội tiếp tam giác

Ví dụ: Trong mặt phẳng Oxy cho tam giác ABC với A(2;6), B(-3;-4), C(5;0). Tìm nửa đường kính đường tròn ngoại tiếp tam giác ABC

Giải:

Ta có, AB=5sqrt{5} , AC= 3sqrt{5}, BC= 4sqrt{5}

p=frac{AB+AC+BC}{2} = frac{5sqrt{5} + 3sqrt{5} + 4sqrt{5}}{2} = 6sqrt{5}

Do đó, nửa đường kính đường tròn nội tiếp tam giác ABC là

r = sqrt{frac{(p – a)(p – b)(p – c)}{p}} = sqrt{frac{(6sqrt{5} – 5sqrt{5})(6sqrt{5}-3sqrt{5})(6sqrt{5}-4sqrt{5})}{6sqrt{5}}} = sqrt{5}

Dạng 3: Viết phương trình đường tròn nội tiếp tam giác ABC khi biết tọa độ 3 đỉnh

Ví dụ: Trong mặt phẳng hệ tọa độ Oxy, cho tam giác ABC có A(11; -7), B(23;9), C(-1,2). Viết phương trình đường tròn nội tiếp tam giác ABC.

Giải:

Ta có phương trình cạnh BC: 7x-24y+55=0

Phương trình đường phân giác góc A: 7x+y-70=0

Gọi D là chân đường phân giác trong đỉnh A. Tọa độ D là nghiệm của hệ:

left{begin{matrix} 7x+y-70=0\ 7x-24y+55=0 end{matrix}right. Leftrightarrow left{begin{matrix} x=frac{65}{7}\ y=5 end{matrix}right. Rightarrow Dleft ( frac{65}{7}; 5 right )

Gọi I(a,b) là tâm đường tròn nội tiếp tam giác ABC.

Ta có:

underset{IA}{rightarrow} = (11-a;-7-b), underset{ID}{rightarrow} = (frac{65}{7}-a; 5-b), BA = 20, BD= frac{100}{7}

underset{ID}{rightarrow} = -frac{BD}{BA}underset{IA}{rightarrow} Leftrightarrow left{begin{matrix} frac{65}{7}-a = -frac{5}{7}(11-a)\ 5-b = -frac{5}{7}(-7-b) end{matrix}right. Leftrightarrow left{begin{matrix} a=10\ b=0 end{matrix}right.

Vậy tọa độ I(10,0)

nửa đường kính đường tròn nội tiếp: r=d(I,AB)=5

Phương trình đường tròn nội tiếp tam giác ABC:(x-10)^2+y^2=25

Ví dụ 2: Trong tam giác ABC có AB = 3cm, AC = 7cm, BC = 8cm. nửa đường kính r đường tròn nội tiếp tam giác ABC bằng?

Hướng dẫn

– Chu vi tam giác ABC: p = 9.

– nửa đường kính: r = dfrac {2sqrt{3}} {3}

Ví dụ 3: Cho ba điểm có tọa độ như sau: A(-2; 3); B(dfrac {1}{4}; 0); C(2; 0) nằm trong mặt phẳng Oxy. Hãy tìm tâm đường tròn nội tiếp tam giác ABC.

6. Bài tập vận dụng đường tròn nội tiếp tam giác

Bài 1

a) Vẽ đường tròn tâm O, nửa đường kính 2cm.

b) Vẽ hình vuông nội tiếp đường tròn (O) ở câu a).

c) Tính nửa đường kính r của đường tròn nội tiếp hình vuông ở câu b) rồi vẽ đường tròn (O; r).

Vẽ hình minh họa

a) Chọn điểm O là tâm, mở compa có độ dài 2cm vẽ đường tròn tâm O, nửa đường kính 2cm.

b) Vẽ đường kính AC và BD vuông góc với nhau. Nối A với B, B với C, C với D, D với A ta được tứ giác ABCD là hình vuông nội tiếp đường tròn (O; 2cm).

c) Vẽ OH ⊥ BC.

⇒ OH là khoảng cách từ từ tâm O đến BC

Vì AB = BC = CD = DA ( ABCD là hình vuông) nên khoảng cách từ tâm O đến AB, BC, CD, DA bằng nhau ( định lý lien hệ giữa dây cung và khoảng cách từ tâm đến dây)

⇒ O là tâm đường tròn nội tiếp hình vuông ABCD

OH là nửa đường kính r của đường tròn nội tiếp hình vuông ABCD.

Tam giác vuông OBC có OH là đường trung tuyến ⇒ OH = một phần 2 BC=BH

Xét tam giác vuông OHB có: r2 + r2 = OB2 = 22 ⇒ 2r2 = 4 ⇒ r2 = 2 ⇒ r = √2(cm)

Vẽ đường tròn (O; OH). Đường tròn này nội tiếp hình vuông, tiếp xúc bốn cạnh hình vuông tại những trung điểm của mỗi cạnh.

Bài 2

a) Vẽ tam giác đều ABC cạnh a = 3cm.

b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.

c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.

d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O; R).

GIẢI

Vẽ hình

a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa).

+ Dựng đoạn thẳng AB = 3cm .

+Dựng cung tròn (A, 3) và cung tròn (B, 3). Hai cung tròn này cắt nhau tại điểm C.

Nối A với C, B với C ta được tam giác đều ABC cạnh 3cm.

b) Gọi A’;B’;C’ lần lượt là trung điểm của BC;AC;AB.

Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác AA’;BB’;CC’ của tam giác đều ABC).

Dựng đường trung trực của đoạn thẳng BC và CA.

Hai đường trung trực cắt nhau tại O.

Vẽ đường tròn tâm O, nửa đường kính R=OA = OB = OC ta được đường tròn ngoại tiếp tam giác ABC.

Tính AA’:

GIẢI

Xét tam giác AA’C vuông tại A’ có AC=3;A'C=dfrac{3}{2}, theo định lý Pytago ta có AC^2=AA'^2+A'C^2Rightarrow AA'^2=3^2-dfrac {3^2}{4}=dfrac {9}{4} Rightarrow AA'=dfrac {3sqrt {3}}{2}

Theo cách dựng ta có O cũng là trọng tâm tam giác ABC nên OA=dfrac{2}3AA'

Ta có nửa đường kính đường tròn ngoại tiếp tam giác ABC là R= OA = dfrac{2}{3}AA' = dfrac{2}{3}. dfrac{3sqrt{3}}{2} = sqrt3 (cm).

c) Do tam giác ABC là tam giác đều những trung điểm A’; B’; C’ của những cạnh BC; CA; AB đồng thời là chân đường phân giác hạ từ A, B, C đến BC, AC, AB.

Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại những trung điểm A’, B’, C’ của những cạnh.

Hay đường tròn (O; r) là đường tròn tâm O; nửa đường kính r=OA’ = OB’ = OC’.

Ta có: r = OA' =dfrac{1}{3} AA' =dfrac{1}{3}.dfrac{3sqrt{3}}{2} =dfrac{sqrt{3}}{2} (cm).

d) Vẽ những tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).

Bài 3

Trên đường tròn nửa đường kính R lần lượt đặt theo cùng một chiều, kể từ điểm A, ba cung overparen{AB}, overparen{BC}, overparen{CD} sao cho: sđoverparen{AB}=60^0, sđoverparen{BC}=90^0, sđoverparen{CD}=120^0

a) Tứ giác ABCD là hình gì?

b) minh chứng hai đường chéo của tứ giác ABCD vuông góc với nhau.

c) Tính độ dài những cạnh của tứ giác ABCD theo R.

GIẢI

a) Xét đường tròn (O) ta có:

displaystyle widehat {BA{rm{D}}} = {{{{90}^0} + {{120}^0}} over 2} = {105^0} (góc nội tiếp chắn overparen{BCD})(1)

displaystyle widehat {A{rm{D}}C} = {{{{60}^0} + {{90}^0}} over 2} = {75^0} ( góc nội tiếp chắn overparen{ABC} ) (2)

Từ (1) và (2) có:

widehat {BA{rm{D}}} + widehat {A{rm{D}}C} = {105^0} + {75^0} = {180^0} (3)

widehat {BA{rm{D}}}widehat {A{rm{D}}C} là hai góc trong cùng phía tạo bởi cát tuyến AD và hai đường thẳng AB, CD.

Đẳng thức (3) chứng tỏ AB // CD. Do đó tứ giác ABCD là hình thang, mà hình thang nội tiếp đường tròn là hình thang cân.

Vậy ABCD là hình thang cân suy ra (BC = AD và sđoverparen{BC}=sđoverparen{AD}=90^0)

b) Giả sử hai đường chéo AC và BD cắt nhau tại I.

widehat {CI{rm{D}}} là góc có đỉnh nằm trong đường tròn, nên:

displaystyle widehat {CI{rm{D}}} =dfrac{sđoverparen{AB}+sđoverparen{CD}}{2}=displaystyle {{{{60}^0} + {{120}^0}} over 2} = {90^0}

Vậy AC bot BD.

c) Vì sđoverparen{AB}= 60^0 nên widehat {AOB} = {60^0} (góc ở tâm)

=> ∆AOB đều, nên AB = OA = OB = R.

Vì sđ overparen{BC} = {90^0} Rightarrow widehat {BOC} = {90^0} (góc ở tâm)

Rightarrow BC = sqrt{OB^2+OC^2}=Rsqrt2.

Kẻ OH bot CD.

Tứ giác ABCD là hình thang cân Rightarrow widehat{BCD}=widehat{ADC}=75^0.

Lại có Delta BOC vuông cân tại O Rightarrow widehat{BCO}=45^0.

Rightarrow widehat{OCD}=widehat{BCD}-widehat{BCO}=75^0-45^0=30^0.

Xét Delta OCH vuông tại H ta có:

HC=OC.cos widehat{OCH}=dfrac{Rsqrt{3}}{2}.

Mà H là trung điểm của CD (định lý đường kính vuông góc với dây cung thì đi qua trung điểm của dây ấy).

Rightarrow CD=2.CH=Rsqrt3.

Có thể bạn quan tâm:

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *