Download.vn mời quý thầy cô cùng tìm hiểu thêm tài liệu Giải bài tập SGK Toán 9 Tập 1 trang 6, 7 để xem gợi ý giải những bài tập của Bài 1: Căn bậc hai.

Tài liệu được biên soạn với nội dung bám sát chương trình sách giáo khoa trang 6, 7 Toán lớp 9 tập 1. Qua đó, những em sẽ biết cách giải toàn bộ những bài tập của bài 1 Chương 1 trong sách giáo khoa Toán 9. Chúc những bạn học tốt.

Giải Toán 9 Bài 1: Căn bậc hai

  • Lý thuyết Căn bậc hai
  • Giải bài tập toán 9 trang 6, 7 tập 1
    • Bài 1 (trang 6 SGK Toán 9 Tập 1)
    • Bài 2 (trang 6 SGK Toán 9 Tập 1)
    • Bài 3 (trang 6 SGK Toán 9 Tập 1)
    • Bài 4 (trang 7 SGK Toán 9 Tập 1)
    • Bài 5 (trang 7 SGK Toán 9 Tập 1)

Lý thuyết Căn bậc hai

I. Căn bậc hai số học

1. Nhắc lại

Ở lớp 7, ta đã biết:

+ Căn bậc hai của một số a không âm là số x sao cho {x^{2;}} = a.

+ Số dương a có đúng hai căn bậc hai là hai số đối nhau là sqrt a- sqrt a

+ Số 0 có đúng một căn bậc hai là chính số 0, ta viết sqrt 0 = 0.

Ví dụ: Số 9 có hai căn bậc hai là 3 và -3

2. Định nghĩa

Với số dương a, số sqrt ađược gọi là căn bậc hai số học của a.

Số 0 cũng được gọi là căn bậc hai số học của 0.

Ví dụ: Căn bậc hai số học của số 9 là sqrt 9=3

để ý.:

Với a ge 0, ta có:

+ Nếu x = sqrt a thì left{ begin{array}{l}x ge 0\{x^2} = aend{array} right.

+ Nếu left{ begin{array}{l}x ge 0\{x^2} = aend{array} right. thì x = sqrt a .

Ta viết x = sqrt a Leftrightarrow left{ begin{array}{l}x ge 0\{x^2} = aend{array} right.

II. So sánh những căn bậc hai số học

Định lý

Với hai số a;b không âm ta có a < b Leftrightarrow sqrt a < sqrt b

Giải bài tập toán 9 trang 6, 7 tập 1

Bài 1 (trang 6 SGK Toán 9 Tập 1)

Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng

121; 144; 169; 225; 256; 324; 361; 400.

Gợi ý đáp án 

Ta có: √121 = 11 vì 11 > 0 và 112 = 121 nên

Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.

giống như:

Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.

Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.

Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.

Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.

Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.

Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.

Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.

Bài 2 (trang 6 SGK Toán 9 Tập 1)

So sánh:

a) 2 và √3 ;

b) 6 và √41 ;

c) 7 và √47

Gợi ý đáp án

a) 2 = √4

Vì 4 > 3 nên √4 > √3 (định lí)

Vậy 2 > √3

b) 6 = √36

Vì 36 < 41 nên √36 < √41

Vậy 6 < √41

c) 7 = √49

Vì 49 > 47 nên √49 > √47

Vậy 7 > √47

Bài 3 (trang 6 SGK Toán 9 Tập 1)

Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương tình sau (làm tròn đến chữ số thập phân thứ ba):

a) x2 = 2 ;

c) x2 = 3,5 ;

b) x2 = 3

d) x2 = 4,12

Hướng dẫn: Nghiệm của phương trình x2 = a ( với a ≥ 0) là những căn bậc hai của a.

Gợi ý đáp án

a) x2 = 2 => x1 = √2 và x2 = -√2

Dùng máy tính bỏ túi ta tính được:

√2 ≈ 1,414213562

Kết quả làm tròn đến chữ số thập phân thứ ba là:

x1 = 1,414; x2 = – 1,414

b) x2 = 3 => x1 = √3 và x2 = -√3

Dùng máy tính ta được:

√3 ≈ 1,732050907

Vậy x1 = 1,732; x2 = – 1,732

c) x2 = 3,5 => x1 = √3,5 và x2 = -√3,5

Dùng máy tính ta được:

√3,5 ≈ 1,870828693

Vậy x1 = 1,871; x2 = – 1,871

d) x2 = 4,12 => x1 = √4,12 và x2 = -√4,12

Dùng máy tính ta được:

√4,12 ≈ 2,029778313

Vậy x1 = 2,030 ; x2 = – 2,030

Bài 4 (trang 7 SGK Toán 9 Tập 1)

Tìm số x không âm, biết:

a) √x = 15;

c) √x < √2;

b) 2√x = 14

d) √2x < 4

Gợi ý đáp án

Lưu ý: Vì x không âm (x ≥ 0) nên những căn thức trong bài đều xác định.

a) √x = 15

Vì x ≥ 0 nên bình phương hai vế ta được:

x = 152 ⇔ x = 225

Vậy x = 225

b) 2√x = 14 ⇔ √x = 7

Vì x ≥ 0 nên bình phương hai vế ta được:

x = 72 ⇔ x = 49

Vậy x = 49

c) √x < √2

Vì x ≥ 0 nên bình phương hai vế ta được: x < 2

Vậy 0 ≤ x < 2

d) sqrt{2x } < 4

Vì x ≥ 0 nên bình phương hai vế ta được:

2x < 16 ⇔ x < 8

Vậy 0 ≤ x < 8

Bài 5 (trang 7 SGK Toán 9 Tập 1)

Đố. Tính cạnh một hình vuông, biết diện tích của nó bằng diện tích của hình chữ nhật có chiều rộng 3,5m và chiều dài 14m

Gợi ý đáp án

Diện tích hình chữ nhật: SHCN = 3,5.14 = 49 (m2)

Gọi a (m) (a > 0) là độ dài của cạnh hình vuông. Suy ra diện tích hình vuông là

SHV = a2 = 49 (m2)

=> a = 7 (m)

Vậy cạnh hình vuông có độ dài là 7m.

Có thể bạn quan tâm:

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *